3.129 \(\int \frac{\sec ^3(c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=147 \[ -\frac{\tan (c+d x)}{4 d \sqrt{a \cos (c+d x)+a}}+\frac{7 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{4 \sqrt{a} d}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{\tan (c+d x) \sec (c+d x)}{2 d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(7*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*Sqrt[a]*d) - (Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c +
 d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) - Tan[c + d*x]/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (Sec[c
 + d*x]*Tan[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.34026, antiderivative size = 147, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {2779, 2984, 2985, 2649, 206, 2773} \[ -\frac{\tan (c+d x)}{4 d \sqrt{a \cos (c+d x)+a}}+\frac{7 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{4 \sqrt{a} d}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{\tan (c+d x) \sec (c+d x)}{2 d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(7*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*Sqrt[a]*d) - (Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c +
 d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) - Tan[c + d*x]/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (Sec[c
 + d*x]*Tan[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]])

Rule 2779

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> -Sim
p[(d*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x] - Dist[1/
(2*b*(n + 1)*(c^2 - d^2)), Int[((c + d*Sin[e + f*x])^(n + 1)*Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e +
f*x], x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b
^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2984

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^(n + 1))/(f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^3(c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx &=\frac{\sec (c+d x) \tan (c+d x)}{2 d \sqrt{a+a \cos (c+d x)}}-\frac{\int \frac{(a-3 a \cos (c+d x)) \sec ^2(c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx}{4 a}\\ &=-\frac{\tan (c+d x)}{4 d \sqrt{a+a \cos (c+d x)}}+\frac{\sec (c+d x) \tan (c+d x)}{2 d \sqrt{a+a \cos (c+d x)}}-\frac{\int \frac{\left (-\frac{7 a^2}{2}+\frac{1}{2} a^2 \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx}{4 a^2}\\ &=-\frac{\tan (c+d x)}{4 d \sqrt{a+a \cos (c+d x)}}+\frac{\sec (c+d x) \tan (c+d x)}{2 d \sqrt{a+a \cos (c+d x)}}+\frac{7 \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx}{8 a}-\int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx\\ &=-\frac{\tan (c+d x)}{4 d \sqrt{a+a \cos (c+d x)}}+\frac{\sec (c+d x) \tan (c+d x)}{2 d \sqrt{a+a \cos (c+d x)}}-\frac{7 \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{4 d}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{7 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{4 \sqrt{a} d}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{\sqrt{a} d}-\frac{\tan (c+d x)}{4 d \sqrt{a+a \cos (c+d x)}}+\frac{\sec (c+d x) \tan (c+d x)}{2 d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 29.7051, size = 1791, normalized size = 12.18 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^3/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

((-7/16 + (7*I)/16)*(1 + E^(I*c))*(Sqrt[2] - (1 - I)*E^((I/2)*c) + (16 - 16*I)*E^(((3*I)/2)*c + I*d*x) + (20 +
 20*I)*Sqrt[2]*E^((2*I)*c + ((3*I)/2)*d*x) - (34 - 34*I)*E^(((5*I)/2)*c + (2*I)*d*x) - (20 + 20*I)*Sqrt[2]*E^(
(3*I)*c + ((5*I)/2)*d*x) + (16 - 16*I)*E^(((7*I)/2)*c + (3*I)*d*x) + (4 + 4*I)*Sqrt[2]*E^((4*I)*c + ((7*I)/2)*
d*x) - (1 - I)*E^(((9*I)/2)*c + (4*I)*d*x) + (8*I)*E^((I/2)*(c + d*x)) - 16*Sqrt[2]*E^(I*(c + d*x)) - (40*I)*E
^(((3*I)/2)*(c + d*x)) + 34*Sqrt[2]*E^((2*I)*(c + d*x)) + (40*I)*E^(((5*I)/2)*(c + d*x)) - 16*Sqrt[2]*E^((3*I)
*(c + d*x)) - (8*I)*E^(((7*I)/2)*(c + d*x)) + Sqrt[2]*E^((4*I)*(c + d*x)) - (4 + 4*I)*Sqrt[2]*E^((I/2)*(2*c +
d*x)))*x*Cos[c/2 + (d*x)/2])/(((-1 - I) + Sqrt[2]*E^((I/2)*c))*(-1 + E^(I*c))*(I - 2*Sqrt[2]*E^((I/2)*(c + d*x
)) - (4*I)*E^(I*(c + d*x)) + 2*Sqrt[2]*E^(((3*I)/2)*(c + d*x)) + I*E^((2*I)*(c + d*x)))^2*Sqrt[a*(1 + Cos[c +
d*x])]) - (((7*I)/4)*ArcTan[(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(-Cos[c/4 +
 (d*x)/4] + Sqrt[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2])/(Sqrt[2]*d*Sqrt[a*(1 + Cos[c
 + d*x])]) - (((7*I)/4)*ArcTan[(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(Cos[c/4
 + (d*x)/4] + Sqrt[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2])/(Sqrt[2]*d*Sqrt[a*(1 + Cos
[c + d*x])]) + (2*Cos[c/2 + (d*x)/2]*Log[Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4]])/(d*Sqrt[a*(1 + Cos[c + d*x]
)]) - (2*Cos[c/2 + (d*x)/2]*Log[Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4]])/(d*Sqrt[a*(1 + Cos[c + d*x])]) - (7*
Cos[c/2 + (d*x)/2]*Log[2 - Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(8*Sqrt[2]*d*Sqrt[a*(1 +
Cos[c + d*x])]) - (7*Cos[c/2 + (d*x)/2]*Log[2 + Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(8*S
qrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]) - (((7*I)/2)*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x)
/4])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]]*Cos[c/2 + (d*x)/2]*Cot[c/2])/(d*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[-
2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]) + (7*Cos[c/2 + (d*x)/2]*Csc[c/2]*(-(d*x*Cos[c/2]) + 2*Log[Sqrt[2] + 2*Cos[(d
*x)/2]*Sin[c/2] + 2*Cos[c/2]*Sin[(d*x)/2]]*Sin[c/2] + ((4*I)*Sqrt[2]*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*
Sin[c/2])*Tan[(d*x)/4])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]]*Cos[c/2])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^
2]))/(2*Sqrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]*(4*Cos[c/2]^2 + 4*Sin[c/2]^2)) + (Cos[c/2 + (d*x)/2]*Sin[(d*x)/2]
)/(2*d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^2) + (Cos[c/
2 + (d*x)/2]*(-Cos[c/2] + 3*Sin[c/2]))/(4*d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/
2] - Sin[c/2 + (d*x)/2])) + (Cos[c/2 + (d*x)/2]*Sin[(d*x)/2])/(2*d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2] + Sin[
c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])^2) + (Cos[c/2 + (d*x)/2]*(Cos[c/2] + 3*Sin[c/2]))/(4*d*Sqrt[a*
(1 + Cos[c + d*x])]*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]))

________________________________________________________________________________________

Maple [B]  time = 3.047, size = 671, normalized size = 4.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+cos(d*x+c)*a)^(1/2),x)

[Out]

-1/2*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*a*(8*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin
(1/2*d*x+1/2*c)^2)^(1/2)+a))-7*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(
1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))-7*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*
x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a)))*sin(1/2*d*x+1/2*c)^4+(-32*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c
)*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a+28*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*s
in(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+28*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2
)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-4*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x
+1/2*c)^2)^(1/2))*sin(1/2*d*x+1/2*c)^2+8*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/
2)+a))*a-7*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos
(1/2*d*x+1/2*c)+2*a))*a-7*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+
a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-2*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/a^(3/2)/(2*cos(1/2*d*x+
1/2*c)-2^(1/2))^2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/sin(1/2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.71313, size = 684, normalized size = 4.65 \begin{align*} \frac{7 \,{\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) - 4 \, \sqrt{a \cos \left (d x + c\right ) + a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \frac{8 \, \sqrt{2}{\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2}\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} + \frac{2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt{a}}}{16 \,{\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/16*(7*(cos(d*x + c)^3 + cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*
x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) - 4*sqrt(a*cos(d
*x + c) + a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*sqrt(2)*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2)*log(-(cos(d*x +
 c)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(
d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{3}{\left (c + d x \right )}}{\sqrt{a \left (\cos{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**3/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [B]  time = 4.71562, size = 501, normalized size = 3.41 \begin{align*} \frac{\sqrt{2}{\left (\frac{7 \, \sqrt{2} \sqrt{a} \log \left (\frac{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} + \frac{8 \, \log \left ({\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt{a}} - \frac{8 \,{\left (17 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{6} \sqrt{a} - 57 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{4} a^{\frac{3}{2}} + 19 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} a^{\frac{5}{2}} - 3 \, a^{\frac{7}{2}}\right )}}{{\left ({\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )}^{2}}\right )}}{16 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/16*sqrt(2)*(7*sqrt(2)*sqrt(a)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^
2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sq
rt(2)*abs(a) - 6*a))/abs(a) + 8*log((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/sqr
t(a) - 8*(17*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*sqrt(a) - 57*(sqrt(a)*tan(1
/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*a^(3/2) + 19*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*ta
n(1/2*d*x + 1/2*c)^2 + a))^2*a^(5/2) - 3*a^(7/2))/((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)
^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^2)/d